9. The set of points of the form, $(2, y)$, where y is a real number, is a vertical line passing through 2 on the x-axis.

The equation of the line is $x=2$.

14. $x+2 y=8$

x	0	$\mathbf{8}$	2	-2	4	-4
y	$\mathbf{4}$	0	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{6}$

17. (a) The vertical line containing the point $(-4,1)$ is $x=-4$.
(b) The horizontal line containing the point $(-4,1)$ is $y=1$.
(c)

$$
\begin{aligned}
y-1 & =5(x+4) \\
y-1 & =5 x+20 \\
-21 & =5 x-y
\end{aligned}
$$

The line with a slope of 5 containing the point $(-4,1)$ is $5 x-y=-21$.
23. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{-1-1}=-1$

We interpret the slope to mean that for every 1 unit change in x, y changes by (-1) unit. That is, for every 1 unit increase in x, y decreases by 1 unit.
28. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{2-(-1)}=\frac{2}{3}$

A slope of $\frac{2}{3}$ means that for every 3 unit increase in x, y will increase 2 units.

36.

44. Use the points $(-1,1)$ and $(2,2)$ to compute the slope of the line:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-1}{2-(-1)}=\frac{1}{3}
$$

Next use the point $(-1,1)$ and the slope $m=\frac{1}{3}$ to write the point-slope form of the equation of the line:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =\frac{1}{3}(x-(-1)) \\
y-1 & =\frac{1}{3}(x+1) \quad \text { Now write the general form of the equation. } \\
3 y-3 & =x+1 \\
x-3 y & =-4
\end{aligned}
$$

48. Since the slope and a point are given, use the point-slope form of the line:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =\frac{1}{2}(x-3) \\
2 y-2 & =x-3 \\
x-2 y & =1
\end{aligned}
$$

60. Since the slope is undefined, the line is vertical. The equation of the vertical line containing the point $(2,1)$ is: $x=2$
61. Since the slope $=0$, the line is horizontal.

The equation of the horizontal line containing the point $(2,1)$ is: $y=1$
66. To obtain the slope and y-intercept, we transform the equation into its slope-intercept form by solving for y.

$$
\begin{aligned}
\frac{1}{3} x+y & =2 \\
y & =-\frac{1}{3} x+2
\end{aligned}
$$

slope: $m=-\frac{1}{3} ; y$-intercept: $(0,2)$

72. slope: $m=0 ; y$-intercept: $(0,-1)$

74. The slope is undefined; there is no y intercept. So the graph is a vertical line.

